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Abstract

Local geometric modifications to slender stepped-beam structures are presented to minimise dynamic
response under broadband excitation. The particular application in this paper is the sensing wire of a hot-
wire probe. Hot-wire anemometry is an experimental technique to measure instantaneous velocity and
temperature fluctuations in flows. The sensing wire of the probe is a thin wire. It is prone to large amplitude
resonance vibrations when exposed to turbulent flow, which may cause significant errors in measurements.
Therefore, minimising resonance vibrations of the wire should improve the accuracy of measurements. To
this end, numerical predictions and laboratory measurements with a scaled model are presented. Currently,
flow measurements are being taken to demonstrate the accuracy due to the proposed structural
modifications. The method also holds promise for other problems where it is possible to manipulate the
spectral distribution of natural frequencies.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Hot-wire anemometry is a powerful and practical technique for measuring mean and
fluctuating fluid velocities and temperatures in turbulent flows. It is relatively inexpensive and easy
to use for research, teaching and industrial applications. For traditional isothermal applications,
see front matter r 2004 Elsevier Ltd. All rights reserved.
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the sensor of a hot-wire probe, which is a thin wire, is kept at a temperature of about 300 1C
during measurements. This mode of operation is referred as the constant temperature
anemometry (CTA) mode. The thin wire can be in the order of 2–6mm in diameter and about
1–3mm in length. In Figs. 1(a) and (b), respectively, a typical hot-wire probe and its sensing wire
are presented. In Fig. 1(c), a photograph is given to show the boundary condition where the wire
is attached to the prong.
In hot-wire anemometry, the cooling effect of the oncoming fluid on the sensing wire is

interpreted as the flow velocity to be measured. The underlying assumption of this interpretation
is that the wire is stationary, and the velocity of the flow ‘relative’ to the wire can be assumed to be
the ‘absolute’ flow velocity. However, due to its flexibility, the probe wire is susceptible to large
amplitude resonance vibrations. As a result of these vibrations, the relative velocity can no longer
represent a close indication of the absolute flow velocity.
The problem of wire vibration was first observed by Perry and Morrison [3,4]. These workers

investigated rotational vibration and skipping (or whirling) of the wire. However, the more
predominant case of stream-wise transverse vibrations had not been investigated in detail before
the work of Turan et al. [2].
Turan et al. [2] reported measurement errors when large amplitude wire vibrations are expected.

It is suggested that the filament of a hot-wire probe can be excited at its first or higher resonance
modes. If the probe wire is excited in the first mode, the resulting vibration velocity is in-phase
with the velocity fluctuations in the flow along the entire wire length. Hence, these in-phase
oscillations may reduce the relative velocity between the wire and the flow, leading to smaller
readings than the true velocity of the flow. Therefore, hot-wire dimensions must be chosen such
that the resulting first natural frequency of the wire is higher than the expected frequency content
in the flow.
One way to achieve a high first natural frequency of the wire is to use a short wire, which

increases the dynamic rigidity. However, a short wire can have excessive heat loss to its prongs
through conduction. Heat conduction creates a non-uniform temperature distribution along the
wire, which in turn reduces measurement sensitivity. Hence, this condition is not acceptable. The
Fig. 1. Showing (a) hot-wire probe in entirety, (b) probe wire [1], and (c) electron microscope photograph of wire and

prong connection [2]. Dimensions are shown in mm.
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problem of heat loss is discussed in Refs. [5,6]. To reduce heat loss to the prongs, an acceptable
sensitive length, L, had been defined as L/d X 200 [5] where d is the sensing wire diameter. This
definition was later modified to 160 p L/d p 310 [7]. The upper limit is to minimise spatial
averaging of eddies with short-wave length over the wire length.
In Ref. [2], a limited number of already existing favourable designs were identified. However, no

effort was made to search for new designs. The objective of the present study is to suggest
geometric changes that can yield improved dynamic characteristics. The following section briefly
describes the proposed control strategy. Then, the numerical model and numerical predictions are
presented using a standard finite element procedure in Sections 3–5. Experiments with scaled
prototype models of the typical designs, and comparison of the experimental observations and
numerical predictions are given in Sections 6 and 7.
2. Proposed technique

Investigation by the authors demonstrated that when the first and second resonance frequencies
were close, beam structures had favourable vibration characteristics [8,9]. The reason for this
trend can be related to the particular shape that a beam assumes when excited at a resonance
frequency. In Fig. 2, the first two mode shapes of a fixed-fixed, uniform beam are shown. The
second resonance mode has a point of zero amplitude at the mid-span, whereas the first resonance
mode has a point of maximum amplitude. When the first two natural frequencies are close, these
two mode shapes should have equal opportunity to contribute to the response of the beam.
In Fig. 2(c), the same beam is shown with a shape obtained by averaging the first two mode

shapes, assuming that both have identical contribution. The resulting shape has a node at about 1
3

distance from one end, on the side where the second mode happens to be out-of-phase with the
first mode. This node, however, is unstable since the value of the second natural frequency will
always be somewhat larger than that of the first natural frequency. As a result, the node will travel
towards the middle, and then to the other side of the beam, before it turns back to assume the
location shown in the figure.
If a beam is designed to have virtually coincident natural frequencies of the first two modes,

then neither of the two natural modes will be able to establish itself. For such a design, response of
the more critical fundamental mode will be effectively suppressed by the node of the second mode.
The objective of this study is to achieve close first two natural frequencies by making local
structural changes.
It should be emphasised that Fig. 2 (c) is included here only to clarify the objective of this study.

The critical modes of a uniform cross-sectioned beam are well separated from each other, with no
possibility for the co-existence of the first two modes. In fact, a stepped geometry, rather than a
uniform one, appears to be one way of achieving close natural frequencies (mode shapes
corresponding to a stepped geometry are presented later in Fig. 9).
An example of wire vibration is given in Fig. 2(d) and (e) from the authors’ own measurements.

These measurements were taken 20mm outside the exit of a fully developed turbulent pipe flow
with a Reynolds number of 230,000, 13.2mm radially inward from the wall of the 108-mm
diameter pipe. Here, the Reynolds number is defined as follows: Re ¼ Uaved=n; where Uave and d

are the average velocity in the pipe and its inner diameter, respectively, and n is the kinematic
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Fig. 2. (a) The fixed–fixed beam model, (b) its first two mode shapes and (c) the first two mode shapes with their

average, (d) Probe 3 in the wake of a 2-mm diameter cylinder and (e) close-up of the sensing wire.
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viscosity of the fluid (air). The photograph shows a top view where the flow direction is from the
top to bottom of the frame. Following the schematic representation in Fig. 3, the hot wire had a
total length of Lo ¼ 3mm; sensing length and diameter, respectively, of L ¼ 1:10mm and d ¼

5:75mm; and end diameter of dg ¼ 40mm: Consequently, its first two natural frequencies were
12,200 and 12,800Hz (the procedure for predicting natural frequencies is presented in the next
section). These conditions, in the wake of a 2-mm diameter cylinder, provided sufficient excitation
for the wire to clearly exhibit the first mode shape indicated by the blurred envelope [10].
3. Numerical model

For numerical modelling purposes, the hot-wire is represented as shown in Fig. 3. In this figure,
the middle sensing wire has d and L for diameter and length, whereas dg; Lg and Lo represent the
diameter and the length of the thicker ends and the total length of the wire, respectively. Boundary
conditions are taken to be built-in where the wire is welded to the prongs. The electron microscope
photograph presented in Fig. 1(c), justifies this boundary condition due to the welded
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Fig. 3. Schematic representation of the probe wire used for numerical modelling.
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connections. Hot-wire probes are manufactured with an intentional pre-tension at room
temperature. The numerical model does not include this pre-tension. The presence of any wire
pre-tension would simply increase all the natural frequencies by the same scale, rather than
making any relative changes. In addition, pre-tension is mostly lost when the wire is heated for
flow measurements.
Along the length of the wire, 30 standard finite beam elements [11] were used to approximate

the dynamic properties of the model in Fig. 3. The three sections of the beam had ten elements
each, a sufficient number to give an accurate representation of the first five mode shapes. Solution
of the resulting eigenvalue problem in Matlab [12] provided the first 58 natural frequencies for the
wire, of which the first five were of interest, since the higher modes are well outside the frequency
range of flow excitation.
Dynamic response of the wire to a broadband, random white noise excitation force was

obtained by numerically integrating the system differential equations of motion using the
Newmark-b technique [11]. The frequency content of the excitation force (zero to 50 kHz) was
sufficient to excite up to the fifth mode of the wire. This external force was applied at one node to
the right of the mid-point so as to be able to excite the even numbered modes which have nodes at
the mid-point. Fifty thousand steps of integrations were performed with a time step of 10ms to
allow the root mean square (rms) of the displacement to settle to within 1% of its steady-state
value.
One of the existing hot-wire probe geometries, Probe 3 in Ref. [2], is investigated here as the

starting geometry. This probe has a total length of 3mm, a sensitive length and diameter of 1.18
and 5.75mm, respectively, resulting in a sensitive length to diameter ratio, L=d; of 205. It has a
thick end diameter of 30mm. The probe wire has a platinum core plated with tungsten, and its
thicker ends are coated with gold. Probe 3 was found to be the least susceptible to large amplitude
vibrations, and one of the most accurate for measurements in turbulent flow [13]. The objective
here is to possibly improve it further.
4. Numerical predictions

The effect of varying the ratio of the length of the end sections to the sensitive length, Lg=L; is
shown in Fig. 4. From left to right along the horizontal axis, the ratio of the end length to the
sensitive length, Lg=L; increases. For a constant Lo of 3mm, this increase results in a shorter L
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Fig. 4. Variation of the first five natural frequencies with Lg/L for dg of (a) 15mm, (b) 30 mm and (c) 45mm. Lg/Lo scale

also shown.
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and longer Lg since Lo ¼ 2Lg þ L: The ratio of the end length to the total length, Lg=Lo; is also
shown as a second axis for reference. The vertical axis represents the five resonance frequencies of
the wire, fn1 to fn5, corresponding to the five curves given in ascending order. Figs. 4(a)–(c)
correspond to end diameters, dg; of 15, 30 and 45mm, respectively.
The starting geometry of Probe 3 is marked with a vertical dashed line at the original value of

Lg=L of 0.77 in Fig. 4(b). As Lg=L increases from the starting value of 0.77 in this figure, the first
and second resonance frequencies become similar, while the third resonance frequency is pushed
away. Furthermore, the third and fourth resonance frequencies also approach one another as
Lg=L increases. As the thick ends increase in length, they become more flexible and participate
more actively in vibrations. It appears that thick ends can participate a lot more readily in the first
two modes as compared to the higher ones. As a result, increasing Lg=L generally gives smaller f n1

and f n2; while higher modes can exhibit initial rapid increases before leveling off and decreasing
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gradually. This trend is most clearly observed in Fig. 4(c), where dg is 45mm, whereas Fig. 4(a)
shows only slight changes in the relative positioning of natural frequencies.
The effect of Lg=L decreasing from the starting value of 0.77 is the relative separation of

the resonance frequencies. For a Lg=L of approximately 0.2, all five resonance frequencies
become almost equally spaced. The reason for this trend originates from the effective stiffening
of the ends as they become shorter. Short ends contribute less to the dynamic response. The
response of the sensing wire overwhelms that of the thick ends, eventually approaching the
case of a uniform beam consisting of the sensing section alone with well separated natural
frequencies.
Eight representative end length to sensitive length ratios (of 0.5, 0.77, 1, 1.13, 1.5, 2, 2.5 and 3)

were chosen from Fig. 4 and subjected numerically to a random white noise excitation to obtain
their dynamic response for comparison. The results of this excitation are shown in Fig. 5. In Fig.
5, a value of zero on the horizontal axis represents the middle of the wire. The vertical axis is the
normalized rms of the response amplitude due to the excitation force. The vertical axis is
normalized by dividing the rms response of each case by the rms response (in the mid span) of
Probe 3, of Ref. [2]. Hence, any new probe with a normalised rms response smaller than unity
represents a desirable structural improvement. Any normalised response larger than unity,
however, indicates a detrimental effect due to geometric changes. Probe 3 is marked with (o) in
Fig. 5 (b), having a Lg=L of 0.77, with a total length of 3mm and an end diameter, dg of 30 mm.
Beam axis (mm)

(a)

3

2

1

(b)

1.5

1

0.5

(c)

1.5

1

0.5

-1.5            -1           -0.5             0             0.5             1            1.5 

Beam axis (mm)

-1.5            -1           -0.5             0             0.5             1            1.5 

Beam axis (mm)

-1.5            -1           -0.5             0             0.5            1            1.5 
0

0

0

N
o
rm

al
is

ed
 r

m
s 

re
sp

o
n
se

 

N
o
rm

al
is

ed
 r

m
s 

re
sp

o
n
se

 

Fig. 5. Variation of the normalised rms displacement response for random white noise excitation and for dg of (a)

15mm, (b) 30mm and (c) 45 mm. Lg/L: 0.5(W); 0.77(o); 1(+); 1.13(*); 1.5(x ); 2(v ); 2.5(�); 3( ).
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Clearly, reduction in the end diameter to 15mm, has a detrimental effect as shown by the increased
rms amplitudes in Fig. 5(a). Fig. 5(b) shows the reduction in amplitude achievable by altering only
Lg=L: The best, lowest amplitude, case is for a Lg=L of 3 ( ). It is notable, however, that there is
little difference in amplitude between geometries having a Lg=L of between 1.5 (x ) and 3 ( ). Fig.
5(c) shows the rms amplitudes for probes with an increased end diameter dg of 45mm. Here, a
probe with Lg=L of 1.5 (x ) has comparable amplitude to that having Lg/L of 1.5 (x ) with dg of
30mm. However, unlike the case for 30mm, increasing Lg=L to 3 ( ), reduces the rms amplitude
significantly for 45mm.
A more concise presentation of this data may be achieved by plotting only the mid-span rms

amplitude for each geometry, as shown in Fig. 6. Similar to Fig. 5, the rms responses are
normalised by dividing them by the response of the starting geometry. The horizontal dotted line
represents the rms response of Probe 3, which intersects the 30mm line at a Lg=L of 0.77. Fig. 6
shows clear reduction of rms amplitude as Lg=L increases. Of particular interest is the plateau
seen in the curves corresponding to end diameters, dg; of 30 and 45mm.
The displacement history of Probe 3 is shown in Fig. 7, along with those of two better cases

having Lg=L of 2 and dg of 30mm (Probe A) and 45 mm (Probe B) chosen from Fig. 6. Here, the
vertical axes are normalised by scaling the peak response of Probe 3 in Fig. 7(a) as unity. The
displacement histories show the reduction in response due to the suggested geometric changes.
The smallest rms amplitude, approximately 0.1 in Fig. 6, is achieved using a total length of 3mm,
a Lg/L of 2 and an end diameter, dg of 45mm, referred as Probe B above. This combination
represents a 90% reduction when compared to the original rms amplitude. The suggested
geometric changes are shown graphically for clarity in Fig. 8, providing a visual comparison
amongst Probes 3, A and B.
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Fig. 6. Variation of the peak rms with Lg/L (or L/d) for dg of 15mm (o), 30mm (*) and 45mm (+).
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Fig. 7. Displacement histories for (a) Probe 3, (b) Probe A with Lg/L=2 and dg=30 mm, and (c) Probe B with Lg/L=2

and dg=45mm. The sensitive length-to-diameter ratios for (a), (b) and (c) are 205, 104 and 104, respectively.

(a) 
Original probe with a total length of 3 mm, sensitive length of 1.2 mm, end 
diameter of 30 µm, and a sensitive length to diameter ratio of 205. 

(b)  Probe with a decreased sensitive length of 0.6 mm. 

(c) 
Probe with a decreased sensitive length of 0.6 mm and an increased end diameter 
of 45 µm.

Fig. 8. Wire geometries for (a) the original probe, Probe 3, (b) for a probe with Lg/L=2 and dg=30mm, Probe A, and

(c) for Lg/L=2 and dg=45 mm, Probe B.
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5. Effect of L/d

The previous work had shown that a range of sensitive length-to-diameter ratios between 310
and 160 was acceptable [7]. A combination of changing the total length, and altering the end
length to sensitive length ratio can allow a geometry that has a L=d within the acceptable range
but still has favourable vibration characteristics. If a length-to-diameter ratio of at least 160 is
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Fig. 9. Showing (a) the displacement history and (b) first (+), second (*) and average (o) mode shapes for Probe C with

d = 3.75mm such that L/d = 160.
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kept, then a sacrifice of the reduction in response is necessary. However, the length-to-diameter
ratio may also be increased by decreasing the sensitive diameter. Such a modification leads to a
more flexible sensitive section which vibrates with a larger amplitude. Compensation for this
detrimental effect can be achieved by moving to a larger Lg=L than 2. An example shown is for a
Lg=L of 3, a total length, Lo; of 3mm, and end diameter, dg; of 45mm (Probe C). Here, the
sensitive diameter has been decreased to 3.75mm, from the original value of 5.75mm resulting in a
L=d of 160. The normalised displacement history for this probe is given in Fig. 9(a) in the same
format as in Fig. 7. The reduction in rms amplitude from the Probe 3 amplitude is 85%.
Compared to the 90% reduction achieved by ignoring the L=d limit with Probe B, this geometry
maintains much of the suggested benefits.
The first three natural frequencies for the wire geometries discussed above are shown in Table 1.

Probe 3 has a separation of 1060Hz between its first and second natural frequencies, and 7520Hz
between its second and third natural frequencies, relative differences of 10% and 40%,
respectively. The last probe geometry given in the table, Probe C with a L=d of 160, has a first
and second natural frequency separation of only 302Hz, which is a relative difference of just
under 4%.
In Fig. 9(b), the first (+) and second (*) mode shapes and their spatial average (o) are shown

for Probe C. The average mode shape is obtained by assuming equal contributions from the first
two modes, similar to the case discussed in Fig. 2(c). Approximately, one-third length of the probe
on the left side of the averaged mode shape, experiences severely limited magnitudes due to the out
of phase nature of the two modes. The right side, on the other hand has comparable magnitudes
for all three. Since the second natural frequency is slightly larger than the first, the averaged shape
shown here cannot be maintained. In time, the restricted magnitudes of the left side will travel
towards right and then back towards left, as the first two mode shapes go out of phase and then go
back to being in phase on the right.
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Table 1

First three natural frequencies of Probe 3 and the new geometrices

Natural frequencies (Hz)

1 2 3

Probe 3

Lg=L ¼ 0:77; dg ¼ 30mm; d ¼ 5:75mm; L=d ¼ 205 9380 10440 17960

Probe A

Lg=L ¼ 2; dg ¼ 30mm; d ¼ 5:75mm; L=d ¼ 104 5850 7692 35633

Probe B

Lg=L ¼ 2; dg ¼ 45mm; d ¼ 5:75mm; L=d ¼ 104 8825 9500 53600

Probe C

Lg=L ¼ 2; dg ¼ 45mm; d ¼ 3:75mm; L=d ¼ 160 7736 8038 48349
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6. Experimental details

The geometry of a probe wire is not a standard one to enable comparisons with published
results from independent sources. Hence, verification of the numerical predictions must be done
experimentally. Due to the small size of a hot-wire probe, a scaled-up experimental model was
used for ease in fabrication and measurement. The numerical model discussed in earlier sections
was scaled up by 1000 times, making it 3m long instead of 3mm. Furthermore, steel and
aluminium replaced tungsten and gold for low cost. Therefore, the experimental model was not an
exact replica but a close representation of the earlier numerical one. This fact necessitated new
numerical predictions with a revised model for comparison with experimental observations.
A total of four beam geometries were chosen here to coincide with the probe wire geometries

discussed earlier. Beam 3 is the starting beam geometry, constructed with aluminium ends of
30mm diameter, with a steel sensitive length of 6mm. It has a total length Lo; of 3m, and a
sensitive length L, of 1.18m giving it a Lg=L of 0.77. It is a 1000 times scaled up version of Probe
3. The beam is mounted between two workbench vices bolted into a reinforced concrete floor.
This rigid end support provides a reasonable simulation of the built-in boundary condition. The
next beam geometry analysed, Beam A, has an end diameter, dg; of 30mm, and a Lg=L of 2. The
other two beam geometries, Beams B and C, are for end diameters of 45mm with Lg=L of 0.77
and 2, respectively.
The experimental setup is shown schematically in Fig. 10. The signal generator, item 1,

produces a broadband, random signal containing a frequency range up to 50Hz, sufficient to
excite the first three natural frequencies of the beam. This type of excitation is identical to that in
the simulations and indicative of turbulent flow. The signal is then amplified, item 2, and sent to
the shaker, item 3.
The shaker was consistently mounted at 800mm from the right-hand side rigid end support, so

that it was well away from any nodal positions for the mode shapes under consideration. A soft
spring, item 4, was used to transfer the force from the shaker to the beam. The response of the
beam was then measured using a laser displacement transducer, item 5. The measurement point
was at 1350mm from the right-hand side rigid end support. As previously mentioned, the mid-
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Table 2

Experimentally and numerically determined natural frequencies of the experimental beams. f i refers to the ith natural

frequency in Hz

f 1 f 2=f 1 f 2 f 3=f 2 f 3 Normalised rms

displacement

Beam 3

Experimental 13.570.5 1.44 19.570.5 1.13 2271 1

(numerical) (16.5) (1.45) (24) (1.2) (29) (1)

Beam A

Experimental 12.570.5 1.36 1770.5 3.12 5372 0.63

(numerical) (13.5) (1.30) (17.5) (3.97) (69.5) (0.25)

Beam B

Experimental 1670.5 1.5 2471 1.25 3071 0.58

(numerical) (19) (1.92) (36.5) (1.05) (38.5) (0.85)

Beam C

Experimental 2171 1.08 2271 2.14 4772 0.27

(numerical) (21.5) (1.05) (23) (3.34) (76.8) (0.18)

(3) Shaker
      Type GW46(1Ω), Rating 38 lbF
      (170N), No. 2132, Gearing & 
     Watson (Electronics)

(5) Laser
Las – 5010 V 

Nippon Automation Co. 
LTD (4)

(1) Signal generator
Dual Channel Signal Analyser

Type 2032 Mod WH1848 
Bruel & Kjær 

(2) Amplifier
SS100 Amplifier

Gearing & Watson (Electronics)

(6) Data acquisition PC
Pentium 200 MHz with 
8 Channel ±10V ADC

Fig. 10. Schematic representation of the experimental rig showing: (1) the signal generator, (2) the signal amplifier, (3)

the shaker, (4) soft spring, (5) the laser displacement transducer and (6) the data acquisition PC.
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point of the beam was not chosen to avoid the node at the centre point with even modes of
vibration.
The displacement data were recorded on a personal computer, item 6, with an analogue to

digital converter (ATD) using HP VEE [14]. The data were sampled at a frequency of 1000Hz for
just over 32 s. The maximum frequency of interest was observed to be around 50Hz, as
summarised in Table 2. The data capture commenced after sufficient time was given for the initial
transient response to subside. The data were then analysed using Matlab [12].
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7. Experimental results

The predicted and measured natural frequencies of the four beams, are shown in Table 2. The
odd numbered columns show the natural frequencies, while the even numbered columns, with the
exception of the last column, show the ratio, f ðiþ1Þ=f i where i is the mode number. Each row has
the experimental results and experimental uncertainty based on repetitions for different beam
geometries, followed by the numerically predicted results in parentheses. Some reduction in the
magnitude of the natural frequencies is observed experimentally, as compared to those predicted
numerically, for all beam geometries analysed. The reason for this apparent reduction in the
overall stiffness may be due to not having perfectly rigid end supports experimentally, as is the
case numerically.
According to the numerical results, Beams 3 and B are expected to have relatively well

separated first and second natural frequencies, f 2=f 1 of 1.45 and 1.92, respectively, making them
susceptible to large amplitude vibrations. The experimentally measured separation between the
natural frequencies for Beam 3, f 2=f 1 of 1.44, matches the prediction closely. For Beam B, a
separation of 1.5 is observed experimentally, not in agreement with the numerically predicted
value of 1.92. On the other hand, numerical predictions suggest that Beams A and C have close
first and second natural frequencies, f 2=f 1 of 1.30 and 1.05, respectively, making them less
susceptible than Beams 3 and B. Experimental observations verify these predictions closely, and
Beams A and C have f 2=f 1 of 1.36 and 1.08, respectively.
The forced vibration responses of Beams 3, A, B and C are presented in Figs. 11–14. The Fast

Fourier Transform (FFT) of displacement histories is shown in Figs. 11(a), 12(a), 13(a) and 14(a),
respectively, for these beams. In each figure, the natural frequencies corresponding to the normal
modes are labelled, along with the observed skipping modes. Skipping modes were observed to
exist in three dimensions, in a circular orbit around the beam’s neutral axis. They were first
noticed after obtaining a large number of spectral peaks in the response of the beams under
random excitation. When tested under sinusoidal excitation, true normal modes were identified
with their characteristic shape. The remainder of the spectral peaks gave a combination of the
fundamental mode existing simultaneously in both the horizontal and vertical planes. Although
the skipping modes appeared at several distinct frequencies, they retained their shape similar to
the in-phase fundamental mode without any nodes.
These three-dimensional skipping modes were thought to exist due to slightly asymmetric

boundary conditions where the vertical plane is slightly less rigid than the horizontal one. As a
result, any slight misalignment of the forcing from the horizontal plane was able to excite skipping
modes. Skipping modes cannot exist numerically. The difference in the numerically and
experimentally observed displacement response is therefore attributed largely to the presence of
the skipping modes in the experiments.
In Table 2, the last column shows the experimental and numerical normalised rms displacement

amplitudes. Numerically, Beam A, due to its close first and second natural frequencies, is expected
to have a vibration amplitude reduced by 75% in comparison with that of Beam 3. While the
experimental results verify this prediction qualitatively, the reduction in the rms amplitude of
Beam A, in comparison with that of Beam 3, is only about 40%. Further differences are seen for
Beam B, where a reduction of just over 40% in rms was measured, whereas 15% less rms
displacement than that of Beam 3 was predicted numerically. Beam C is the only geometry for
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Fig. 11. Beam 3 (a) FFT, (b) displacement history and (c) amplitude probability distribution for the starting beam

geometry of Lg/L=0.77 and end diameter, dg=30mm.
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which the measured and predicted results agree, and about 73% and 82% reduction, respectively,
in the rms displacement, is achieved.
The only beam not to exhibit any skipping modes was Beam C, possibly due to its first and

second plane modes being almost coincident. This observed result is in agreement with the
numerical prediction, since this geometry was predicted to be the least susceptible to large
amplitude vibrations. In the experiments, when allowed to vibrate freely in response to a transient
input, a node clearly travelled up and down the sensitive length of this beam, as predicted. The
beam attempted to have both mode shapes simultaneously. Since the second natural frequency
was slightly larger than the first, a travelling node was formed. This travelling node prohibited the
natural vibration modes from building to resonance.
Figs. 11(b), 12(b), 13(b) and 14(b) show the normalised displacement histories of the

experimentally measured data for each beam. Again, the axes for all four plots are the same, so
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Fig. 12. Same as Fig. 11 but for Beam A with Lg/L=2 and dg=30mm.
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that comparisons may be easily made. Another form of comparison between each geometries’
displacement history is shown with the percentage probability distributions in Figs. 11(c), 12(c),
13(c) and 14(c). The horizontal axis here is the same as the vertical normalised displacement
amplitude axis of Fig. 11(b), while the vertical axis is the percentage probability. If the vibration
amplitude were always close to zero, such histograms would be tall and narrow. For a beam that
is susceptible to large amplitude vibrations, the percentage probability has a shallow and wide
distribution. The taller and narrower probability distribution of Beam C in Fig. 14(c) than that of
Beam 3 in Fig. 11(c) indicates a significant improvement over Beam 3. Beams A and B, however,
show only small improvements over Beam 3.
As indicated earlier, the presence of skipping modes might be the cause of the difference

between experimental and numerical results. While the skipping modes are difficult to avoid
experimentally, they are completely removed by choosing the geometry of Beam C, which has
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Fig. 13. Same as Fig. 11 but for Beam B with Lg/L=0.77 and dg=45mm.
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been shown to be more stable than Beam 3 with less than 30% of the rms amplitude. Despite the
rather simplistic approach used in the numerical prediction model, it is pleasing to notice that the
suggested geometry of Beam C maintains its effectiveness.
8. Conclusions

Numerical results and experimental verification are presented for a novel technique of vibration
control using structural modifications. The objective of the structural modifications is to impose
coincident modes for slender beam structures. Although it is intuitive to anticipate that the node
of a higher mode should restrain the peak magnitude of a lower mode (second and first modes,
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Fig. 14. Same as Fig. 11 but for Beam C with Lg/L=2 and dg=45mm.
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respectively, in this particular case), the present contribution does not yet extend to predict the
achievable level of control.
The particular problem investigated here is that of hot-wire probe vibration under turbulent

flow conditions resulting in random excitation of the probe wire. Numerical results indicate that
significant improvements are possible if the first two modes are forced to be close. Experimental
verification of the numerical results is presented for scaled up slender beams. The next stage in this
research is to conduct actual size probe manufacture followed by flow velocity measurements.
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